2,928 research outputs found

    Non-perturbative O(a) improvement of the vector current

    Get PDF
    We discuss non-perturbative improvement of the vector current, using the Schroedinger Functional formalism. By considering a suitable Ward identity, we compute the improvement coefficient which gives the O(a) mixing of the tensor current with the vector one.Comment: 3 pages (LaTeX, 2 ps figures, styles), talk presented at Lattice 9

    Universal behaviour of the SU(2) running coupling constant in the continuum limit

    Full text link
    We present data from the ALPHA Collaboration about lattice calculation of SU(2) pure--gauge running coupling constant, obtained with two different definitions of the coupling itself, which show universality of the continuum limit and clarify the applicability of renormalized perturbation theory.Comment: 3 pages, postscript, contribution to LAT94 also available at http://sutova.roma2.infn.it/preprints/TovApe/lat94m.ps (eq. (3) corrected

    A perturbative determination of O(a) boundary improvement coefficients for the Schr\"odinger Functional coupling at 1-loop with improved gauge actions

    Full text link
    We determine O(aa) boundary improvement coefficients up to 1-loop level for the Schr\"odinger Functional coupling with improved gauge actions including plaquette and rectangle loops. These coefficients are required to implement 1-loop O(aa) improvement in full QCD simulations for the coupling with the improved gauge actions. To this order, lattice artifacts of step scaling function for each improved gauge action are also investigated. In addition, passing through the SF scheme, we estimate the ratio of Λ\Lambda-parameters between the improved gauge actions and the plaquette action more accurately.Comment: 17 pages, 2 figures, 6 table

    Lattice QCD without topology barriers

    Get PDF
    As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.Comment: Plain TeX source, 26 pages, 4 figures include

    Center vortex model for the infrared sector of SU(3) Yang-Mills theory -- baryonic potential

    Full text link
    The baryonic potential in the framework of the SU(3) random vortex world-surface model is evaluated for a variety of static color source geometries. For comparison, carefully taking into consideration the string tension anisotropy engendered by the hypercubic lattice description, also the Delta and Y law predictions for the baryonic potential are given. Only the Y law predictions are consistent with the baryonic potentials measured.Comment: 13 LaTeX pages, 2 figures (3 ps files). Replacement contains additional reference

    The gradient flow running coupling with twisted boundary conditions

    Get PDF
    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density E(t)\langle E(t)\rangle is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge SU(2)SU(2) coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.Comment: 27 pages. LaTe

    Non-perturbative improvement of composite operators with Wilson fermions

    Full text link
    We propose a method to improve lattice operators composed of Wilson fermions which allows the removal of all corrections of O(a)O(a), including those proportional to the quark mass, leaving only errors of O(a2)O(a^2). The method exploits the fact that chiral symmetry is restored at short distances. By imposing this requirement on correlation functions of improved lattice operators at short distances, the coefficients which appear in these operators can be determined. The method is an extension of the improvement program of the ALPHA collaboration, which, up to now, has only been applicable in the chiral limit. The extension to quarks with non-zero masses is particularly important for applications in heavy quark physics.Comment: 15 pages, Late

    Quark confinement and the bosonic string

    Get PDF
    Using a new type of simulation algorithm for the standard SU(3) lattice gauge theory that yields results with unprecedented precision, we confirm the presence of a γ/r\gamma/r correction to the static quark potential at large distances rr, with a coefficient γ\gamma as predicted by the bosonic string theory. In both three and four dimensions, the transition from perturbative to string behaviour is evident from the data and takes place at surprisingly small distances.Comment: TeX source, 21 pages, figures include

    QCD with light Wilson quarks on fine lattices (I): first experiences and physics results

    Get PDF
    Recent conceptual, algorithmic and technical advances allow numerical simulations of lattice QCD with Wilson quarks to be performed at significantly smaller quark masses than was possible before. Here we report on simulations of two-flavour QCD at sea-quark masses from slightly above to approximately 1/4 of the strange-quark mass, on lattices with up to 64x32^3 points and spacings from 0.05 to 0.08 fm. Physical sea-quark effects are clearly seen on these lattices, while the lattice effects appear to be quite small, even without O(a) improvement. A striking result is that the dependence of the pion mass on the sea-quark mass is accurately described by leading-order chiral perturbation theory up to meson masses of about 500 MeV.Comment: TeX source, 17 pages, figures include
    corecore